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Microvesicles derived from endothelial progenitor
cells protect the kidney from ischemia-reperfusion
injury by microRNA-dependent reprogramming of

resident renal cells
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Endothelial progenitor cells are known to reverse acute
kidney injury by paracrine mechanisms. We previously found
that microvesicles released from these progenitor cells
activate an angiogenic program in endothelial cells by
horizontal mRNA transfer. Here, we tested whether these
microvesicles prevent acute kidney injury in a rat model

of ischemia-reperfusion injury. The RNA content of
microvesicles was enriched in microRNAs (miRNAs) that
modulate proliferation, angiogenesis, and apoptosis. After
intravenous injection following ischemia-reperfusion, the
microvesicles were localized within peritubular capillaries
and tubular cells. This conferred functional and morphologic
protection from acute kidney injury by enhanced tubular
cell proliferation, reduced apoptosis, and leukocyte
infiltration. Microvesicles also protected against progression
of chronic kidney damage by inhibiting capillary rarefaction,
glomerulosclerosis, and tubulointerstitial fibrosis. The
renoprotective effect of microvesicles was lost after
treatment with RNase, nonspecific miRNA depletion of
microvesicles by Dicer knock-down in the progenitor cells,
or depletion of pro-angiogenic miR-126 and miR-296

by transfection with specific miR-antagomirs. Thus,
microvesicles derived from endothelial progenitor cells
protect the kidney from ischemic acute injury by delivering
their RNA content, the miRNA cargo of which contributes to
reprogramming hypoxic resident renal cells to a regenerative
program.
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Ischemia-reperfusion is one of the main causes of acute
kidney injury (AKI)."? Therapeutic strategies aimed to
inhibit ischemia—reperfusion injury (IRI) may potentially
limit AKI and the development of chronic kidney disease
(CKD).” Several studies addressed the role of bone marrow—
derived and tissue-resident stem cells in the regeneration of
ischemic kidneys."” Endothelial progenitors (EPCs) are
circulating bone marrow-derived precursors able to localize
within sites of tissue damage inducing regeneration.®’ EPCs
are known to exert protective effects in experimental models
of hindlimb ischemia, myocardial infarction, and glomerular
diseases.'®?* Moreover, it has been recently demonstrated
that EPCs are recruited in the kidney after IRI and that they
induce tissue repair via secretion of pro-angiogenic fac-
tors.">” EPC paucity and dysfunction have been proposed as
mechanisms of accelerated vascular injury in CKD patients.'®

The regenerative effects of EPCs on ischemic tissues have
been ascribed to paracrine mechanisms including the release
of growth factors and microvesicles (MVs).'”'® MVs are
small particles derived from the endosomal compartment
known to have an important role in cell-to-cell communica-
tion through the transfer of proteins, bioactive lipids, and
RNA to target cells.'”?* We recently demonstrated that MV's
released from EPCs are internalized into endothelial cells
activating an angiogenic program by horizontal transfer of
mRNAs. "

The aim of this study was to evaluate whether MVs
released from EPCs exert a protective effect in an experi-
mental model of acute renal IRI. Moreover, we studied
in vitro the mechanisms of MV protection from hypoxia-
induced endothelial and epithelial kidney cell injury.

RESULTS

Characterization of EPC- and fibroblast-derived MVs
Transmission electron microscopy on EPCs revealed the
shedding of MVs (Figure la and b) by a membrane-sorting
process (Figure lc). Purified MVs showed a homogenous
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Figure 1| Characterization of endothelial progenitor (EPC)-derived microvesicles (MVs). (a, b) Transmission electron microscopy
performed on cultured EPCs showing MV shedding by a membrane-sorting process. (c) Schematic representation of shedding MV formation
by budding of plasma membrane. (d) Transmission electron microscopy analysis of purified MVs showing a spheroid shape. In a, b, and d,
bars indicate 100 nm. (e) Nanosight analysis of purified MVs: curve 1 describes the relationship between particle number distribution
(left Y axis) and particle size (X axis); curve 2 describes the correlation between cumulative percentage distribution of particles (percentile
in right Y axis) and particle size (X axis). Mean size and particle concentration values were calculated by the Nanoparticle Tracking
Analysis (NTA) software that allows analysis of video images of the particle movement under Brownian motion captured by Nanosight
LM10 and calculation of the diffusion coefficient, sphere equivalent, and hydrodynamic radius of particles by using the Strokes—Einstein
equation. (f) Fluorescence-activated cell sorting (FACS) analysis of MV protein surface expression. (g) Bioanalyzer RNA profile of EPCs and
EPC-derived MVs. (h) Analysis of microRNAs (miRNA array) present in EPCs and EPC-derived MVs (white circle: EPCs; gray circle:

EPC-derived MVs).

pattern of spheroid particles. About 90% of MVs showed a
size ranging from 60 to 160nm (Figure 1d), whereas a
minority of them were larger with a size around 1 pm. The
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purity and the size of EPC-MV preparations were confirmed
by Nanosight analysis (Figure le). By fluorescence-activated
cell sorting (FACS) analysis, EPC-derived MVs expressed o4
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Figure 2| Representative quantitative reverse transcriptase (qRT)-PCR for miR-126 and miR-296 in endothelial progenitors
(EPCs) and EPC-derived microvesicles (MVs). (a) qRT-PCR analysis of miR-126 and miR-296 content in EPCs cultured with vehicle alone
(wild-type), subjected to small interfering RNA (siRNA) for Dicer (siRNA Dicer), or transfected with anti-miR-126 and anti-miR-296 antagomiRs
(AmiR 126/296). (b) qRT-PCR analysis of miR-126 and miR-296 content in MVs derived from EPCs cultured with vehicle alone (wild-type),
treated with 1 U/ml RNase (RNase), subjected to siRNA for Dicer (siRNA Dicer), or transfected with anti-miR-126 and anti-miR-296

antagomiRs (AmiR 126/296).

and B1 integrin, CD154 (CD40-L), r-selectin and CD34 but
not human leukocyte antigen class I and class II antigens and
markers of platelets (P-selectin, CD42b) and monocytes
(CD14) (Figure 1f). Bioanalyzer profile of EPC-derived MVs
showed the presence of different subsets of RNAs and in
particular enrichment for small RNAs, including microRNAs
(miRNAs) (Figure 1g): miRNA array analysis showed the
presence of 131 miRNAs shared by EPCs and EPC-derived
MVs and 26 miRNAs specifically concentrated in MVs
(Figure 1h, Supplementary Information Tables S1 and S2).
The presence in EPCs and EPC-derived MVs of several
pro-angiogenic and anti-apoptotic miRNAs, including
miR-126 and miR-296, was confirmed by quantitative
reverse transcriptase (qRT)-PCR with specific primer pairs
(Figure 2). The expression of miR-126 and miR-296 seen by
qRT-PCR was abrogated by RNase treatment of MVs and was
absent in MVs derived from Dicer-silenced or antagomiR-
transfected EPCs (Figure 2). MVs derived from fibroblasts
were also characterized and used as negative experimental

414

control. Fibroblast-derived MVs were larger than those of
EPCs with a mean size of 260 nm detected by Nanosight (not
shown). By FACS analysis, fibroblast-derived MVs expressed
a4 and B1 integrin, CD154 and L-selectin, but not CD34,
class I and class II human leukocyte antigens, and markers
of platelets (P-selectin, CD42b) and monocytes (CDI14)
(Figure 3a and b). In comparison with EPC-derived MVs,
fibroblast-derived MVs expressed significantly lower levels of
L-selectin (Figure 3b). Bioanalyzer profile of fibroblast-
derived MVs showed the presence of different subsets of
RNAs including miRNAs (Figure 3c). The qRT-PCR analysis
with specific primer pairs evidenced the absence of the pro-
angiogenic miR-126 and miR-296 within fibroblast-derived
MVs (Figure 3d).

Protective effect of EPC-derived MVs in experimental
renal IRI

We evaluated the effects of EPC-derived MVs in an experi-
mental model of acute renal IRI in Wistar rats (experimental
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Figure 3 | Characterization of fibroblast-derived microvesicles (MVs). (a) Fluorescence-activated cell sorting (FACS) analysis of
fibroblast-derived MV protein surface expression. (b) Comparison between FACS analysis of fibroblast- and endothelial progenitor (EPC)-
derived MV protein surface expression. (c) Bioanalyzer RNA profiling of fibroblasts and fibroblast-derived MVs. (d) Representative quantitative
reverse transcriptase (qQRT)-PCR analysis for miR-126 and miR-296 in fibroblasts and fibroblast-derived MVs.

plan in Figure 4). In comparison with sham-operated animals,
rats subjected to kidney IRI showed a significant rise in
serum creatinine (Figure 5a) and blood urea nitrogen (BUN)
(Figure 5b) that peaked at day 2 in association with histolo-
gical signs of tubular injury such as formation of hyaline casts,
vacuolization, widespread necrosis, and denudation of basal
membrane (Figure 5¢ and Table 1). When rats were treated
with EPC-derived MVs, a significant reduction of tubular
lesions in parallel with the decrease in serum creatinine and
BUN was observed at day 2 (Figure 5a— and Table 1). The
specificity of EPC-derived MVs was indicated by the absence
of protective effect exerted by MVs derived from human
fibroblasts (Figure 5a and b and Table 1). EPC-derived MVs
enhanced the proliferation rate of tubular cells after IRI as
detected by bromo deoxy uridine (Figure 6a and c¢) and
proliferating cell nuclear antigen (Figure 6b and d) staining.
Moreover, as shown by TdT-mediated dUTP nick end labeling
assay (Figure 7a and b), MVs significantly reduced the number
of apoptotic tubular cells. These renoprotective effects were
significantly reduced when MVs were pre-treated with 1 U/ml
RNase (Figures 5a—, 6a-d, 7a—c and Table 1). When MVs
derived from Dicer knocked-down EPCs or MVs released from
EPCs transfected with anti-miR126 and anti-miR-296 antag-
omiRs were used, a significant reduction of the functional and
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histological protective effects on ischemic kidneys was also
observed (Figures 5a—c, 6a-b, 7a and Table 1). Moreover, in
comparison with sham-operated animals, IRl induced a
massive infiltration of granulocytes (Figure 7¢) and monocytes
(Figure 7d) within kidneys. A significant decrease in leuko-
cyte infiltration was observed in rats subjected to IRI and
injected with MVs but not with RNase-treated MVs (Figure 7c¢
and d). Similar functional and histological renoprotective
effects of MVs were observed also at day 7 after IRI (not
shown).

Six months after IRI, animals treated with MVs showed
reduced levels of serum creatinine (Figure 8a), tubulo-
interstitial fibrosis, and glomerulosclerosis (Figure 8b), as
well as a preserved expression of rat endothelial cell antigen-1
antigen in the tubulo-interstitial structures (Figure 8c and d)
and within the glomeruli (Figure 8e and f), suggesting an
inhibition of microvascular rarefaction and of progression
toward CKD.

In biodistribution experiments, the accumulation of
PKH26-labeled MVs was observed in the kidney 2 and 6h
after IRI. After 2h, MVs were detectable within the endo-
thelial cells of large vessels and within some peritubular
capillaries and lumen of injured tubules (Figure 9a and b).
After 6h, the amount of tubular cells containing MVs was
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markedly enhanced (Figure 9c). When injected in sham-
operated control rats, the renal accumulation was signifi-
cantly lower than in IRI, and only a slight staining for MVs
was detected within glomeruli and tubular cells (Figure 9d).
MVs were also detected in the liver of sham-operated
controls, as well as in rats subjected to kidney IRI (Figure 9e).

In vitro effects of EPC-derived MVs on hypoxic peritubular

endothelial cells (TEnCs) and tubular epithelial cells (TEpCs)
In consideration of the in vivo localization of MVs in
peritubular capillaries and tubular cells, we evaluated the role

of adhesion molecules in the internalization of MVs in
isolated human TEnCs and TEpCs. MVs were efficiently
internalized in TEnCs (Figure 9f) and TEpCs (Figure 9g).
Moreover, hypoxia significantly enhanced MV internalization
in both cell types (Figure 9h and i). Experiments conducted
with blocking antibodies revealed that 1-selectin was the main
mediator of MV internalization in hypoxic cells (Figure 9h
and 1). Internalization was not altered in RNase-treated MVs
(not shown). Control fibroblast-derived MVs showed a
reduced internalization in normoxic and hypoxic TEnCs
and TEpCs (Figure 10).

Male Wistar Experimental groups:
rats
1. Normal
2. Sham operated
3.1RI
4. 1Rl + MV EPC
_ IRI 5.1RI + MV EPC RNase
Right nephrectomy+
45 min. left pedicle 6. IRl + MV EPC siRNA DICER
clamping 7.IRI + MV EPC siRNA control
8. IRl + AmiR126/296 (antagomiRs)
l 9. IRl + MV fibroblast
Day 0 Day 2 Day 7 Day 180
[ ] ] 1 s [ |
1 1 1 i d |
MV injection Killed Killed Killed
(30 ug) inthe n=6 per group n=6 per group n=6 per group
tail vein immediately (all groups) (all groups) (groups 1-4)
after IRI functional and functional and functional and
hystological hystological hystological
analysis analysis analysis
(BrdU, PCNA, (BrdU, PCNA,
TUNEL, leukocyte TUNEL, leukocyte
infiltration) infiltration)

Figure 4| Representative scheme of the experimental plan of acute renal ischemia-reperfusion injury (IRI) in male Wistar rats.
Schematic representation of IRl model, experimental groups, number of animals treated, modality and dose of MV injection, timing of
killing, and functional/histological analysis performed. BrdU, bromo deoxy uridine; EPC, endothelial progenitor; MV, microvesicle; PCNA,

proliferating cell nuclear antigen.

>

Figure 5 | Protective effect of endothelial progenitor (EPC)-derived microvesicles (MVs) on acute kidney ischemia-reperfusion injury
(IRI). (a, b) Evaluation of serum creatinine (a) and blood urea nitrogen (BUN) (b) in different experimental groups. IRl induced a significant
increase in serum creatinine and BUN (*P<<0.05 IRI vs. sham or normal). EPC-derived MVs significantly decreased serum creatinine and
BUN (*P<0.05 IRI+MV EPC vs. IRI). The pre-treatment of EPC MVs with 1 U/ml RNase or the use of MVs released from EPCs transfected
with small interfering RNA (siRNA) Dicer or with antagomiRs-126/296 (AmiR126/296) did not reduce serum creatinine and BUN

('"P<0.05 IR+ MV EPC RNase, IRI+MV EPC siRNA DICER or IRl + MV EPC AmiR126/296 vs. IRl + MV EPC). MVs released from EPCs
transfected with an irrelevant control siRNA (siRNA control) significantly decreased serum creatinine and BUN ("P<0.05 IRI + MV EPC siRNA
control vs. IRI). The specificity of EPC-derived MVs was confirmed by the lack of renoprotective effect of MVs derived from control
human fibroblasts (TP <0.05 IRl -+ MV fibroblasts vs. IRl + MV EPC; P> 0.05 IRl + MV fibroblasts vs. IRI). (c) Hematoxylin/eosin staining of
representative kidney sections from different experimental groups (magnification x 100).
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Internalization of MVs within hypoxic TEnCs was
followed by reduced apoptosis (Figure 11a) and enhanced
angiogenesis on Matrigel-coated surfaces (Figure 11b). The
anti-apoptotic and pro-angiogenic effects of MVs on
hypoxic TEnCs was almost completely abrogated by RNase

pre-treatment or by using MVs released by EPCs engineered
to knock-down Dicer or by EPCs transfected with the
selective anti-miR-126 and anti-miR-296 antagomiRs
(Figure 11a and b). Gene array analysis revealed that MVs
restored in TEnCs the expression of pro-angiogenic and
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anti-apoptotic genes that were downregulated by hypoxia
(Figure 11c).

Internalization of MVs within TEpC was followed by a
significant inhibition of hypoxia-induced apoptosis as shown
by TdT-mediated dUTP nick end labeling assay (Figure 12a)
and enzyme-linked immunosorbent assay for caspase-3, -8,
and -9 activities (Figure 12b). The anti-apoptotic effect of
MVs was inhibited by RNase pre-treatment or by using MVs
released by EPCs engineered to knock-down Dicer or by
EPCs transfected with anti-miR-126 and anti-miR-296
antagomiRs. Gene array analysis revealed that MV stimula-
tion of hypoxic TEpCs reduced the expression of inflamma-
tory and pro-apoptotic caspases (Figure 12¢) and of genes
involved in both mitochondrial and death receptor pathways
of apoptosis (Figure 12d).

DISCUSSION

In this study, we demonstrated that MVs derived from EPCs
exert a protective effect on experimental acute renal IRI as
detected by the significant decrease in serum creatinine/BUN
levels and by the improvement of histological signs of
microvascular and tubular injury.

EPCs were shown to induce angiogenesis and tissue repair
in experimental models of acute glomerular and tubular
injury.'>'>*° The origin of EPCs is still a matter of debate.
Some studies suggested that contamination with monocytes
and platelet-derived products of EPCs derived from circula-
tion may account for their pro-angiogenic potential.”>*” To
avoid such contamination, we purified MVs from EPCs after
3-5 passages in culture. The cells used and the derived MVs
expressed the CD34 stem cell marker and markers of
endothelium, but not of monocytes and platelets. Previous
studies suggested that EPCs do not act via a direct trans-
differentiation into mature endothelial cells, but rather by
paracrine mechanisms.'>*® We demonstrated that MVs act
as a paracrine mediator as they may enter the target cells
through specific receptordigand interactions and deliver
selected patterns of mRNAs and miRNAs.2*?*3! Moreover,
MVs released from mesenchymal stem cells were shown to
favor recovery from toxic and ischemic AKI*>*

Table 1| Morphologic evaluation

Casts (n/HPF) Tubular necrosis (n/HPF)

Normal 0 0
Sham 0 0

IRI 26112 291042
IRI+MV EPC 048 £0.21* 0.38 £ 0.16*
IRI+MV EPC RNase 293+0384 2.82+0.89
IRI+MV EPC siRNA Dicer 22611.28 1.83+1.19
IRI+MV EPC siRNA control 0.38 £0.23* 0.42+0.11*
IRH+MV EPC AmiR126/296 1.36+0.56** 1.76 £ 0.79%*
IRI+MV fibroblasts 221094 2.31£0.82

Abbreviations: EPC, endothelial progenitor; IRI, ischemia-reperfusion injury;
MV, microvesicle; n/HPF, number/high-power field; siRNA, small interfering RNA.
*P<0.05 IRHEPC MV, IRI+EPC MV siRNA control or IRI+EPC MV AmiR126/296 vs. IR;
*P<0.05 IRI+EPC MV AmiR126/296 vs. IRI+EPC MV.

Renal morphology score in different experimental groups: n/HPF.
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Herein, we demonstrated that EPC-derived MVs protected
kidney from IRI-induced functional impairment and mor-
phologic injury. Indeed, the administration of MVs sig-
nificantly decreased serum creatinine and BUN levels,
renal cell apoptosis, and leukocyte infiltration. Moreover,
MVs enhanced tubular cell proliferation and angiogenesis.
These renoprotective effects were specific for EPC-derived
MVs, as MVs obtained from human fibroblasts were
ineffective.

Little is known at present about the biogenesis and the
molecular composition of MVs produced by EPCs in
different physiopathological states. It is supposed that the
production of MVs is enhanced after appropriate stimu-
lation. In this study, we evaluated the effects of MVs
released from EPCs in basal culture conditions. However,
our preliminary results indicate that hypoxia enhances
the production from EPCs of MVs carrying miR-126 and
miR-296 (not shown).

In vivo, MVs were detected both in endothelial cells and in
tubular epithelial cells. The in vitro studies on isolated
hypoxic TEnCs and TEpCs demonstrated that 1-selectin was
instrumental in MV internalization, probably through the
binding to fucosylated residues or other oligosaccharide
ligands known to be upregulated after IRI.***”

It is known that IRI induces both microvascular and
tubular injury and that TEnC dysfunction is associated with an
extension phase of AKL.3%*" Moreover, the rarefaction of renal
microvascular density in the presence of sustained hypoxia is
associated with an accelerated progression toward CKD.™ On
this basis, we observed the effects of EPC-derived MVs on
kidneys 6 months after IRI, suggesting that MVs significantly
reduced glomerulosclerosis, tubulo-interstitial fibrosis, and
microvascular rarefaction, thus preserving renal function.

The results of this study suggest that the protective effects
of EPC-derived MVs in experimental renal IRI seem to be
associated with the triggering of angiogenesis in TEnCs and
by the inhibition of apoptosis in TEpCs. Indeed, the
detrimental effects induced by hypoxia on TEnCs were
limited by MVs. It is interesting to note that gene array
analysis of MV-stimulated hypoxic TEnCs revealed the
upregulation of molecules involved in cell proliferation,
angiogenesis, and inhibition of apoptosis. After an ischemic
damage, TEpCs are subjected to loss of polarity with
mislocalization of proteins located at the apical or at the
basolateral membrane and finally to necrosis and/or
apoptosis.””*? Herein, we showed that MVs protected TEpCs
from hypoxia-induced apoptosis through the downregulation
of inflammatory and pro-apoptotic caspases and by modula-
tion of molecules involved in the mitochondrial and death
receptor pathways.*>*

We observed that RNase treatment induced the loss of
the protective effect of MVs on functional and morpho-
logical alterations induced by IRI in vive and on hypoxia-
induced TEnC and TEpC injury in viiro. The significant
reduction of MV biological activities after treatment with
RNase suggests a putative horizontal transfer of RNAs
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antagomiRs-126/296 (AmiR126/296) significantly reduced the number of proliferating cells (*P<0.05 IRl + MV RNase, IRI+ MV siRNA DICER
or IRI+ MV AmiR126/296 vs. IRl + MV). MVs released from EPCs transfected with an irrelevant control siRNA (siRNA control) significantly
enhanced the number of BrdU and PCNA-positive cells (*P<0.05 IRI+ MV siRNA control vs. IRI). All sections were counterstained with
hematoxylin; original magnification x 100. BrdU, bromo deoxy uridine; PCNA, proliferating cell nuclear antigen.

from MVs to injured renal cells. It is known that MVs
protect RNAs from physiological concentrations of RNase.
However, as seen in previous studies,®2%3233 the treatment
of MVs with high concentrations of RNase inactivates the
RNAs.

We previously demonstrated that MVs released from
EPCs shuttle mRNAs involved in angiogenic pathways such
as eNOS and Akt.'"® We now identified in EPC-derived MV
several miRNAs typical of hematopoietic stem cells and of

Kidney International (2012) 82, 412-427

the endothelium, which are associated with cell prolifera-
tion, angiogenesis, and inhibition of apoptosis.*>** In
particular, MVs carried the angiomiRs miR-126 and miR-
296." The role of miRNAs shuttled by MVs in renal cell
regeneration in vive and in vitro was confirmed by
experiments with MVs derived from EPCs previously
subjected to the knock-down of Dicer, the intracellular
enzyme essential for miRNA production.*®*” These results
suggest that miRNAs shuttled by MVs contribute to
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Figure 7 | Decrease in tubular cell apoptosis and leukocyte infiltration induced by endothelial progenitor (EPC)-derived
microvesicles (MVs) in ischemic kidneys. (a, b) Count (a) and representative micrographs (b) of TdT-mediated dUTP nick end labeling
(TUNEL)-positive cells in different experimental conditions. A significant increase in TUNEL-positive cells was observed in ischemia-
reperfusion injury (IRl) in comparison with sham-treated animals (*P<0.05 IRl vs. sham). MVs induced a significant decrease in apoptotic
cells (*P<0.05 IRI+ MV vs. IRI). The pre-treatment of MVs with 1U/ml RNase or the use of MVs released from EPCs transfected with
small interfering RNA (siRNA) Dicer or with antagomiRs-126/296 (AmiR126/296) significantly reduced their anti-apoptotic effect

("P<0.05 IRl - MV RNase, IRl + MV siRNA DICER or IRl - MV AmiR126/296 vs. IRl - MV). MVs released from EPCs transfected with an
irrelevant control siRNA (siRNA control) significantly reduced the number of TUNEL-positive cells (*P<0.05 IRl + MV siRNA control vs. IRI).
All sections were counterstained with hematoxylin; original magnification: x 100. (¢, d) Counts of infiltrating granulocytes (c) and
monocytes (d) in different experimental conditions. IRl induced an enhancement of granulocyte and monocyte infiltration in the kidney
(*P < 0.05 IRI vs. sham), which was not observed in MV-treated animals (P < 0.05 IRl + MV vs. IRI). By contrast, RNase pre-treatment inhibited

the decrease in granulocyte and monocyte infiltration induced by MVs ("P<0.05 IR+ MV RNase vs. IRl MV).

their regenerative potential. Moreover, miR-126 and
miR-296 were identified to have a key role in MV-assoc-
iated renoprotective effects, as MVs derived from EPCs
transfected with specific antagomiRs anti-miR-126 and anti-
miR-296 were less effective.

In conclusion, MVs released from EPCs exert a RNA-
mediated protective effect in experimental acute renal IRI
overcoming the cross-species barrier. The protective effect of
MVs released from EPCs in hypoxic tissues may find
therapeutic application in AKI, CKD, vascular diseases, and
IRT after solid organ transplantation without the potential
risks of stem cell therapy such as maldifferentiation and
tumorigenesis.
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MATERIALS AND METHODS

Isolation and characterization of EPCs and MVs derived from
EPCs and fibroblasts

EPCs were isolated from peripheral blood mononuclear cells of
healthy donors by density centrifugation and characterized as
previously described.”'® EPCs from 3-5 passages were used in order
to avoid monocyte and platelet contamination. EPCs expressed the
CD34 stem cell marker and markers of endothelial cells such as
CD31, KDR, CD105, and von Willebrand factor, which was detected
by FACS and western blot analysis. Moreover, EPCs were able to
uptake acetylated low-density lipoprotein.”’ In selected experiments,
EPCs were engineered to knock-down Dicer by specific small
interfering RNA (siRNA) (Santa Cruz Biotechnology, Santa Cruz,
CA) or transfected with anti-miR-126 and miR-296 antagomiRs

Kidney International (2012) 82, 412-427
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Figure 8|Long-term preservation of renal function and inhibition of glomerulosclerosis, tubulo-interstitial fibrosis, and capillary
rarefaction induced by endothelial progenitor (EPC)-derived microvesicles (MVs). (a) Evaluation of serum creatinine 180 days after
ischemia-reperfusion injury (IRl) in different experimental groups. Rats treated with EPC-derived MVs showed lower serum creatinine levels
than those observed in IRl animals (*P<0.05 IRl vs. sham; *P<0.05 IRl + MV vs. IRI). (b) Representative Masson's trichrome (upper panels)
and hematoxylin/eosin (lower panels) staining of kidney sections of rats killed at 180 days after IRl in different experimental groups. Original
magnification: x 100 in the upper panel, x 200 in the lower panel. (c-f) Mean fluorescence intensity (c, e) and representative confocal
microscopy micrographs showing the staining for rat endothelial cell antigen-1 (RECA-1) antigen (d, f) in tubulo-interstitial structures

(¢, d) and within the glomeruli (e, f) in kidney sections of rats killed at 180 days after IRl in different experimental groups. Original
magnification: x 200 in d and f: nuclei were counterstained with 2.5 ug/ml Hoechst (*P <0.05 IRI vs. sham; #P<0.05 IRI + MV vs. IRI).

(Ambion, Austin, TX). Western blot analysis for Dicer expression
was performed by using an anti-Dicer polyclonal antibody (Abcam,
Cambridge, UK). MVs from EPCs and control human fibro-
blasts were obtained from supernatants by ultracentrifugation as
previously described.'®** MV shape and size were evaluated by
transmission electron microscopy and by Nanosight technology
(Nanosight, London, UK). Antigen expression on MVs was studied
by FACS using antibodies directed to CDI14, CD34, CD42b,
L-selectin, P-selectin, CD154 (Dako, Copenhagen, Denmark), o4
integrin (Becton Dickinson, San Jose, CA), ovp3 integrin, o6
integrin (BioLegend, San Diego, CA), and human leukocyte antigen
class T and II (Santa Cruz Biotechnology). RNA extraction from
MVs was performed using the mirVana isolation kit (Ambion).
RNA was analyzed using the Agilent 2100 bioanalyzer (Agilent Tech,
Santa Clara, CA). miRNA expression levels were analyzed using
the Applied Biosystems TagMan MicroRNA Assay Human Panel
Early Access kit (Applied Biosystems, Foster City, CA) to profile 365
miRNAs by qRT-PCR (E-MEXP-2956, European Bioinformatics
Institute: www.ebl.ac.uk/arrayexpress/). All reactions were per-
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formed using an Applied Biosystems 7900HT real-time PCR
instrument equipped with a 384-well reaction plate (detailed
protocol reported in Supplementary Information). miRNA expres-
sion levels were analyzed by qRT-PCR in a StepOne Real Time
System (Ambion): 200 ng of RNA was reverse-transcribed and the
complementary DNA was used to detect and quantify specific
miRNAs within EPCs, fibroblasts, and MVs derived from both cell
types by qRT-PCR using the miScript SYBR Green PCR Kit (Qiagen,
Valencia, CA). In selected experiments, MVs were labeled with the
red fluorescent dye PKH26 (Sigma-Aldrich, St Louis, MO) or
treated with 1 U/ml RNase (Ambion) and then blocked with 10 U/ml
RNase inhibitor (Ambion)."

TEnC and TEpC cultures

Primary TEpCs were isolated and characterized as previously
described.*** Primary TEnCs were obtained by using filters with
different meshes to discard the glomeruli. Isolated cells were
cultured on gelatine-coated flasks with endothelial growth factors
(Lonza, Basel, Switzerland)m: after three passages in culture, cells
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Figure 9|In vivo localization and in vitro internalization of endothelial progenitor (EPC)-derived microvesicles (MVs) in

isolated human tubular endothelial cells (TEnCs) and tubular epithelial cells (TEpCs). (a, b) Confocal microscopy analysis of PKH26-
labeled MV localization in endothelial cells (green staining for rat endothelial cell antigen-1 (RECA-1); arrows) of large vessels and
peritubular capillaries 2 h after injection. (c) Confocal microscopy analysis of PKH26-labeled MV localization in tubular epithelial cells

(green staining for laminin). (d, e) Representative micrograph of PKH26-labeled MVs in kidney glomeruli (d) and liver (e) of sham-operated
animals. In merge images, nuclei were counterstained with 2.5 ng/ml Hoechst. Original magnification: x 100 in a, b, ¢, and d and x 200 in e.
(f, g) Confocal microscopy analysis of PKH26-labeled MVs in TEnCs (f) and TEpCs (g). Nuclei were counterstained with 2.5 ug/ml Hoechst.
Original magnification x 400. (h, i) Representative FACS analysis of PKH26-labeled MV internalization in TEnCs (h) and TEpCs (i) cultured in
normoxia or hypoxia in the presence or absence of different blocking monoclonal antibodies. Hypoxia enhanced MV internalization in

TEnCs and TEpCs (P<0.05 normoxia vs. hypoxia). Anti-L.-selectin mAb significantly decreased MV internalization in both cell types (P<0.05

hypoxia + L-selectin mAb vs. hypoxia). Three different experiments were conducted with similar results. Kolmogorov-Smirnov statistical

analysis was performed on FACS data.

were further separated by magnetic cell sorting using an anti-CD31
antibody coupled to magnetic beads (MACS system, Miltenyi
Biotec, Auburn, CA) and characterized for endothelial markers
(CD31, CD105, and vonWillebrand factor).

Cell culture in hypoxic environment

TEnCs and TEpCs were cultured for 24 h into an airtight humidified
chamber flushed with a gas mixture containing 5% CO,, 94% N,
and 2% O, at 20 atm, 37 °C.

422

Kidney IRl model

The experimental protocol is given in detail in Figure 4. Male Wistar
rats (250 g body weight) were anesthetized by using an induction
chamber with isoflurane and by intraperitoneal administration of
ketamine (100 mg/kg). A subcutaneous injection of 1-2ml normal
saline was administered to replace fluid loss during the surgical
procedure. After midline abdominal incision, the right kidney was
removed by a sub-capsular technique. Left renal artery and vein were
then occluded by using a non-traumatic vascular clamp that was

Kidney International (2012) 82, 412-427
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Figure 10| Comparison of in vitro internalization of endothelial progenitor (EPC)- and fibroblast-derived microvesicles (MVs) in
tubular endothelial cells (TEnCs) and tubular epithelial cells (TEpCs) cultured in normoxia or hypoxia. Representative fluorescence-
activated cell sorting (FACS) analysis of PKH26-labeled MVs derived from EPCs or fibroblasts (FIBRO) internalized in TEnCs and TEpCs
cultured in normoxia or hypoxia. Three different experiments were conducted with similar results. Kolmogorov-Smirnov statistical analysis

was performed.

applied across the hilum of the kidney for 45 min. Animals were
divided in the following groups: (1) normal (untreated); (2) sham-
operated (right nephrectomy); (3) IRI (right nephrectomy + left
renal pedicle clamp); (4) IRI 4+ EPC MVs (right nephrectomy + left
renal pedicle clamp + intravenous (i.v.) injection of 30pug EPC
MVs); (5) IRT+RNase EPC MVs (right nephrectomy + left renal
pedicle clamp + i.v. injection of 30pg EPC MVs pre-treated with
1 U/ml RNase); (6) IRI+siRNA Dicer EPC MVs (right nephrecto-
my + left renal pedicle clamp +i.v. injection of 30 pg MVs derived
from EPCs engineered to knock-down Dicer by siRNA); (7)
IRI+siRNA Control EPC MVs (right nephrectomy + left renal
pedicle clamp+i.v. injection of 30ug MVs engineered with an
irrelevant siRNA); (8) IRI+ AntagomiR-126/296 EPC MVs (right
nephrectomy + left renal pedicle clamp + Lv. injection of 30 pg MVs
derived from EPCs transfected with anti-miR-126 and anti-miR-296
antagomiRs); and (9) IRT+ fibroblast MVs (right nephrectomy + left
renal pedicle clamp+iv. injection of 30ug MVs derived from
cultured fibroblasts). For all groups, MVs were diluted in 0.9% saline
and injected in the tail vein immediately after IRI. Six animals from
each group were killed at day 2, day 7, and day 180 (only groups 1 to
4). Kidneys were removed for histology and immunohistochemistry.
For renal histology, 5-pm-thick paraffin kidney sections were
routinely stained with hematoxylin/eosin or Masson’s trichrome
(Merck, Darmstadt, Germany). Luminal hyaline casts and cell loss
(denudation of tubular basement membrane) were assessed in non-
overlapping fields (up to 28 for each section) using a x 40 objective
(high-power field) to evaluate the score of AKI. The number of casts
and tubular profiles showing necrosis were recorded in a single-blind
manner.” Proliferation was evaluated in rats injected with bromo
deoxy uridine by using anti-bromo deoxy uridine (Dako) or anti-
proliferating cell nuclear antigen (Santa Cruz Biotechnology)
monoclonal antibodies.”® TdT-mediated dUTP nick end labeling
assay (Chemicon International, Temecula, CA) for the detection of
apoptotic cells was performed according to manufacturer’s instruc-
tions. Leukocyte infiltration was evaluated by staining with anti-
monocyte (Chemicon International) or anti-granulocyte (Serotec,
Oxford, UK) antibody. Immunoperoxidase staining was performed by
using an anti-mouse HRP (Pierce, Rockford, IL). Confocal micro-
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scopy analysis was performed on frozen sections for localization of
PKH26-labeled MVs within kidneys after staining with an anti-
laminin (Sigma-Aldrich) or anti-rat endothelial cell antigen-1 anti-
body (Serotec).

Blood samples for measurement of serum creatinine and
BUN were collected before and 2, 7, or 180 days after IRI. Creati-
nine concentrations were determined using a Beckman Creatinine
Analyzer II (Beckman Instruments, Fullerton, CA). BUN was
assessed in heparinized blood using a Beckman Synchrotron CX9
automated chemistry analyzer (Beckman Instruments).

In vitro internalization of MVs into renal cells

TEnCs and TEpCs were seeded on six-well plates in normoxic or
hypoxic culture conditions and incubated with PKH26-labeled
MVs derived from EPCs or fibroblasts. MV internalization was
evaluated by confocal microscopy (Zeiss LSM 5 PASCAL, Jena,
Germany) and FACS in the presence or absence of 1 pg/ml blocking
antibodies directed to ovP3-integrin (BioLegend), o4-integrin,
a5-integrin (Chemicon International), CD29, or L-selectin (Becton
Dickinson).

In vitro assays on TEnCs and TEpCs

Angiogenesis: Formation of capillary-like structures was studied on
TEnCs (5 x 10*) seeded for 6h on Matrigel and observed under an
inverted microscope.” > Apoptosis: TEnCs or TEpCs were subjected
to TdT-mediated dUTP nick end labeling assay (Chemicon
International). Samples were analyzed under a fluorescence micro-
scope, and green-stained apoptotic cells were counted in 10 non-
consecutive microscopic fields.”® The activities of caspase-3, -8, and
-9 were assessed by enzyme-linked immunosorbent assay (Chemi-
con International) based on the spectrophotometric detection of the
cromophore p-nitroanilide after cleavage from the labeled substrate
Asp-Glu-Val-Asp-p-nitroanilide, which is recognized by caspases.
Cell lysates were diluted with an appropriate reaction buffer, and
Asp-Glu-Val-Asp-p-nitroanilide was added at a final concentration
of 50mol/l. Samples were analyzed in an automatized enzyme-
linked immunosorbent assay reader at a wavelength of 405 nm. Each
experiment was performed in triplicate.** "
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Figure 11 |Effect of endothelial progenitor (EPC)-derived microvesicles (MVs) on apoptosis, angiogenesis, and mRNA expression
profile of tubular endothelial cells (TEnCs) cultured in hypoxic conditions. (a) TdT-mediated dUTP nick end labeling (TUNEL) assay
of TEnCs cultured in different experimental conditions. With respect to normal culture (Control), hypoxia induced a significant

increase in TEnC apoptosis (*P<0.05 hypoxia vs. control). MVs significantly decreased hypoxia-induced TEnC apoptosis (*P<0.05
hypoxia + MV vs. hypoxia). By contrast, preincubation of MVs with 1 U/ml RNase or the use of MVs released from EPCs transfected with
small interfering RNA (siRNA) Dicer or with antagomiRs-126/296 (AmiR126/296) significantly inhibited the anti-apoptotic effect of MVs
("P<0.05 hypoxia + MV RNase, hypoxia + MV siRNA Dicer or hypoxia + MV AmiR126/296 vs. hypoxia + MV). MVs released from EPCs
transfected with an irrelevant control siRNA (siRNA control) significantly reduced the number of apoptotic cells (P <0.05 hypoxia +MV
siRNA control vs. hypoxia). Results are given as mean * s.d. of green-stained apoptotic cells in 10 microscopic fields (magnification x 100)
of five independent experiments. (b) In vitro angiogenesis assay of TEnCs cultured on Matrigel-coated plates in different experimental
conditions. With respect to normal culture (control), hypoxia induced a significant decrease in TEnC angiogenesis (*P<0.05 hypoxia vs.
control). MVs enhanced angiogenesis of hypoxic TEnCs ("P<0.05 hypoxia + MV vs. hypoxia). By contrast, preincubation of MVs with

1 U/ml RNase or the use of MVs released from EPCs transfected with siRNA Dicer or with antagomiRs-126/296 (AmiR126/296) significantly
inhibited the pro-angiogenic effect of MVs (TP<0.05 hypoxia+ MV RNase, hypoxia + MV siRNA Dicer or hypoxia +~ MV AmiR126/296 vs.
hypoxia + MV). MVs released from EPCs transfected with an irrelevant control siRNA (siRNA control) significantly increased TenC
angiogenesis (P <0.05 hypoxia + MV siRNA control vs. hypoxia). Results are given as mean + s.d. of 20 different microscopic fields
(magnification x 100). Three independent experiments were conducted with similar results. (c¢) Gene array profiling of TEnCs cultured

in different experimental conditions (angiogenesis-related genes). The graph shows the fold variation of angiogenesis-related genes
between TEnCs cultured in hypoxia in the absence (white columns) or presence (black columns) of MVs in comparison with TEnCs cultured
in normoxic conditions. Samples were normalized for the signals found in housekeeping genes (actin, GAPDH). Three independent
experiments were conducted with similar results. Gene table: CCL2, chemokine (C-C motif) ligand 2; CXCL5, C-X-C motif chemokine 5;
FGFR3, fibroblast growth factor receptor 3; IL8, interleukin-8; MMP2, matrix metalloproteinase-2; NRP1, neuropilin-1; PECAM1, platelet
endothelial cell adhesion molecule (CD31); PLAU, urokinase-type plasminogen activator; SPHK1, sphingosine kinase 1; TYMP, thymidine
phosphorylase; VEGFa, vascular endothelial growth factor A.
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Figure 12| Effect of endothelial progenitor (EPC)-derived microvesicles (MVs) on apoptosis and mRNA expression profile of
tubular epithelial cells (TEpCs) cultured in hypoxic conditions. (a, b) TdT-mediated dUTP nick end labeling (TUNEL) assay (a) and
enzyme-linked immunosorbent assay (ELISA) for caspase-3, -8, and -9 activities (b) of TEpCs cultured in different experimental conditions.
Hypoxia induced a significant increase in TEpC apoptosis (*P<0.05 hypoxia vs. control). MVs significantly decreased hypoxia-induced
TEpC apoptosis ("P<0.05 hypoxia + MV vs. hypoxia). By contrast, preincubation of MVs with 1 U/ml RNase or the use of MVs released
from EPCs transfected with small interfering RNA (siRNA) Dicer or with antagomiRs-126/296 (AmiR126/296) significantly inhibited the
anti-apoptotic effect of MVs (P<0.05 hypoxia + MV RNase, hypoxia + MV siRNA Dicer or hypoxia + MV AmiR126/296 vs. hypoxia + MV).
MVs released from EPCs transfected with an irrelevant control siRNA (siRNA Control) significantly reduced the number of apoptotic cells
(*P<0.05 hypoxia + MV siRNA control vs. hypoxia). Results are given as mean +s.d. of green-stained apoptotic cells in 10 microscopic
fields (magnification x 100) of five independent experiments. Similar results were observed for caspase activities (*P<0.05 hypoxia + MV
or hypoxia + MV siRNA control vs. hypoxia; *P<0.05 hypoxia +~ MV RNase or hypoxia + MV siRNA Dicer vs. hypoxia + MV). Results are
given as mean * s.d. of five independent experiments and expressed as percentage increase in caspase activity with respect to normal
culture conditions. (¢, d) Gene array profiling of TEpCs cultured in different experimental conditions (apoptosis-related genes). The graph
shows the fold variation of apoptosis-related genes between TEpCs cultured in hypoxia in the absence (black columns) or presence
(white columns) of MVs in comparison with TEpCs cultured in normoxic conditions. Samples were normalized for the signals found in
housekeeping genes (actin, GAPDH). Three independent experiments were conducted with similar results. Gene table in ¢: CASP1, caspase-
1; CASP10, caspase-10; CASP14, caspase-14; CASP3, caspase-3; CASP4, caspase-4; CASP5, caspase-5; CASP6, caspase-6; CASP7, caspase-7;
CASP8, caspase-8; CASP9, caspase-9. Gene table in d: APAF1, apoptotic protease-activating factor 1; BAK1, BCL2-antagonist/killer 1;

BAX, BCL2-associated X protein; BIK, Bcl-2-interacting killer; NOD1, nucleotide-binding oligomerization domain-containing protein 1;
CD27, CD 27; CD40, CD 40; CD40LG, CD40 ligand (CD154); CRADD, death domain (CARD/DD)-containing protein; FADD, Fas-associated
protein with death domain; FASLG, Fas ligand (TNF superfamily, member 6); LTA, lymphotoxin alpha; LTBR, lymphotoxin beta receptor
(TNFR superfamily, member 3); PYCARD, apoptosis-associated speck-like protein containing a CARD or ASC; RIPK2, receptor-interacting
serine/threonine-protein kinase 2; TNF, tumor necrosis factor; TNFSF10, TNF-related apoptosis-inducing ligand (TRAIL); TRADD, tumor
necrosis factor receptor type 1-associated DEATH domain protein; TRAF2, TNF receptor-associated factor 2; TRAF3, TNF receptor-associated
factor 3; TRAF4, TNF receptor-associated factor 4.
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Gene array analysis

The human GEarray kit for the study of angiogenesis in TEnCs and
apoptosis in TEpCs (SuperArray, Bethesda, MD) was used to
characterize the gene expression profile of cells cultured in normoxia
or hypoxia in the presence or absence of MVs. Microarray data
archive: (E-MEXP-2972 for TEnC angiogenesis and E-MEXP-3086
for TEpC apoptosis, European Bioinformatics Institute: www.ebi.
ac.uk/arrayexpress/).

Statistical analysis

All data of different experimental procedures are expressed as
average +s.d. Statistical analysis was performed by Kruskal-Wallis
statistical test for in vive studies and by Student’s f-test or analysis of
variance with Newmann—Keuls or Dunnet’s multicomparison test
where appropriate for in vitre experiments. For FACS data, the
Kolmogorov-Smirnov nonparametric statistical test was performed.
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